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Abstract—The advent of secure public blockchains through
Bitcoin and later Ethereum, has brought forth a notable degree
of interest and capital influx, providing the premise for a
global wave of permissionless innovation. Despite lofty promises,
creating a decentralized, secure and scalable public blockchain
has proved to be a strenuous task.

This paper proposes Elrond, a novel architecture which goes
beyond state of the art by introducing a genuine state sharding
scheme for practical scalability, eliminating energy and com-
putational waste while ensuring distributed fairness through a
Secure Proof of Stake (SPoS) consensus. Having a strong focus on
security, Elrond’s network is built to ensure resistance to known
security problems like Sybil attack, Nothing at Stake attack and
others. In an ecosystem that strives for interconnectivity, our
solution for smart contracts offers an EVM compliant engine to
ensure interoperability by design.

Preliminary simulations and testnet results reflect that Elrond
exceeds Visa’s average throughput and achieves an improvement
beyond three orders of magnitude or 1000x compared to the
existing viable approaches, while drastically reducing the costs
of bootstrapping and storage to ensure long term sustainability.

I Introduction
1 General aspects

Cryptocurrency and smart contract platforms such as Bit-
coin and Ethereum have sparked considerable interest and
have become promising solutions for electronic payments,
decentralized applications and potential digital stores of value.
However, when compared to their centralized counterparts
in key metrics [1], the current state of affairs suggests that
present public blockchain iterations exhibit severe limitations,
particularly with respect to scalability, hindering their main-
stream adoption and delaying public use. In fact, it has
proved extremely challenging to deal with the current engi-
neering boundaries imposed by the trade-offs in the blockchain
trilemma paradigm [2]. Several solutions have been proposed,
but few of them have shown significant and viable results.
Thus, in order to solve the scalability problem, a complete
rethinking of public blockchain infrastructures was required.

2 Defining the challenges
Several challenges must be addressed properly in the pro-

cess of creating an innovative public blockchain solution
designed to scale:

• Full decentralization - Eliminating the need for any
trusted third party, hence removing any single point of
failure;

• Robust security - Allowing secure transactions and
preventing any attacks based on known attack vectors;

• High scalability - Enabling the network to achieve a
performance at least equal to the centralized counterpart,
as measured in TPS;

• Efficiency - Performing all network services with mini-
mal energy and computational requirements;

• Bootstrapping and storage enhancement - Ensuring a
competitive cost for data storage and synchronization;

• Cross-chain interoperability - Enforced by design, per-
mitting unlimited communication with external services.

Starting from the above challenges, we’ve created Elrond
as a complete rethinking of public blockchain infrastructure,
specifically designed to be secure, efficient, scalable and inter-
operable. Elrond’s main contribution rests on two cornerstone
building blocks:

1) A genuine State Sharding approach: effectively parti-
tioning the blockchain and account state into multiple
shards, handled in parallel by different participating
validators;

2) Secure Proof of Stake consensus mechanism: an
improved variation of Proof of Stake (PoS) that ensures
long term security and distributed fairness, while elimi-
nating the need for energy intensive PoW algorithms.

3 Adaptive State Sharding
Elrond proposes a dynamically adaptive sharding mecha-

nism that enables shard computation and reorganizing based
on necessity and the number of active network nodes. The
reassignment of nodes in the shards at the beginning of
each epoch is progressive and nondeterministic, inducing no
temporary liveness penalties. Adaptive state sharding comes
with additional challenges compared to the static model. One
of the key-points resides in how shard-splitting and shard-
merging is done to prevent overall latency penalties introduced
by the synchronization/communication needs when the shard
number changes. Latency, in this case, is the communication
overhead required by nodes, in order to retrieve the new state,
once their shard address space assignment has been modified.
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Elrond proposes a solution for this problem below, but first
some notions have to be defined: users and nodes. Users are
external actors and can be identified by an unique account
address; nodes are computers/devices in the Elrond network
that run our protocol. Notions like users, nodes, addresses will
be further described in chapter II.1 - Entities.

Elrond solves this challenge by:
1) Dividing the account address space in shards, using a

binary tree which can be built with the sole requirement
of knowing the exact number of shards in a certain
epoch. Using this method, the accumulated latency is
reduced and the network liveness is improved in two
ways. First, thanks to the designed model, the dividing of
the account address space is predetermined by hierarchy.
Hence, there is no split overhead, meaning that one
shard breaks into two shards, each of them keeping
only one half of the previous address space in addition
to the associated state. Second, the latency is reduced
through the state redundancy mechanism, as the merge
is prepared by retaining the state in the sibling nodes.

2) Introducing a technique of balancing the nodes in each
shard, to achieve overall architecture equilibrium. This
technique ensures a balanced workload and reward for
each node in the network.

3) Designing a built-in mechanism for automatic transac-
tion routing in the corresponding shards, considerably
reduces latency as a result. The routing algorithm is
described in chapter IV.4 - Elrond sharding approach.

4) In order to achieve considerable improvements with re-
spect to bootstrapping and storage, Elrond makes use of
a shard pruning mechanism. This ensures sustainability
of our architecture even with a throughput of tens of
thousands of transactions per second (TPS).

4 Secure Proof of Stake (SPoS)
We introduce a Secure Proof of Stake consensus mecha-

nism, that expands on Algorand’s [3] idea of a random se-
lection mechanism, differentiating itself through the following
aspects:

1) Elrond introduces an improvement which reduces the
latency allowing each node in the shard to determine
the members of the consensus group (block proposer and
validators) at the beginning of a round. This is possible
because the randomization factor r is stored in every
block and is created by the block proposer using a BLS
signature [4] on the previous r.

2) The block proposer is the validator in the consensus
group who’s hash of the public key and randomization
factor is the smallest. In contrast to Algorand’s [3]
approach, where the random committee selection can
take up to 12 seconds, in Elrond the time necessary for
random selection of the consensus group is considerably
reduced (estimated under 100 ms) excluding network
latency. Indeed, there is no communication requirement
for this random selection process, which enables Elrond
to have a newly and randomly selected group that
succeeds in committing a new block to the ledger in

each round. The tradeoff for this enhancement relies on
the premise that an adversary cannot adapt faster than
the round’s time frame and can choose not to propose
the block. A further improvement on the security of the
randomness source, would be the use of verifiable delay
functions (VDFs) in order to prevent any tampering
possibilities of the randomness source until it is too
late. Currently, the research in VDFs is still ongoing
- there only a few working (and poorly tested) VDF
implementations.

3) In addition to the stake factor generally used in PoS
architectures as a sole decision input, Elrond refines its
consensus mechanism by adding an additional weight
factor called rating. The node’s probability to be selected
in the consensus group takes into consideration both
stake and rating. The rating of a block proposer is recal-
culated at the end of each epoch, except in cases where
slashing should occur, when the actual rating decrease
is done instantly, adding another layer of security by
promoting meritocracy.

4) A modified BLS multisignature scheme [5] with 2
communication rounds is used by the consensus group
for block signing

5) Elrond considers formal verification for the critical pro-
tocol implementations (e.g. SPoS consensus mechanism)
in order to validate the correctness of our algorithms.

II Architecture Overview
1 Entities

There are two main entities in Elrond: users and nodes.
Users, each holding a (finite) number of public / private
(Pk/sk) key pairs (e.g. in one or multiple wallet apps), use
the Elrond network to deploy signed transactions for value
transfers or smart contracts’ execution. They can be identified
by one of their account addresses (derived from the public
key). The nodes are represented by the devices that form the
Elrond network and can be passive or actively engaged in
processing tasks. Eligible validators are active participants in
Elrond’s network. Specifically, they are responsible for running
consensus, adding blocks, maintaining the state and being
rewarded for their contribution. Each eligible validator can
be uniquely identified by a public key constructed through a
derivation of the address that staked the necessary amount and

Fig. 1: Relations between Elrond entities
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the node id. Relations between entities in the Elrond protocol
are shown in Fig. 1.

Furthermore, the network is divided into smaller units called
shards. An eligible validator is assigned to a shard based on
an algorithm that keeps the nodes evenly distributed across
shards, depending on the tree level. Each shard contains a
randomly selected consensus group. Any block proposer is
responsible to aggregate transactions into a new block. The
validators are responsible to either reject, or approve the
proposed block, thereby validating it and committing it to the
blockchain.

2 Intrinsic token

Elrond grants access to the usage of its network through
intrinsic utility tokens called Elronds, in short ERDs. All
costs for processing transactions, running smart contracts and
rewards for various contributions to the network will be paid in
ERDs. References to fees, payments or balances are assumed
to be in ERDs.

3 Threat model

Elrond assumes a byzantine adversarial model, where at
least 2

3n+1 of the eligible nodes in a shard are honest. The
protocol permits the existence of adversaries that have stake or
good rating, delay or send conflicting messages, compromise
other nodes, have bugs or collude among themselves, but as
long as 2

3n+1 of the eligible validators in a shard are honest/not
compromised, the protocol can achieve consensus.

The protocol assumes highly adaptive adversaries, which
however cannot adapt faster than a round’s timeframe. The
computational power of an adversary is bounded, therefore
the cryptographic assumptions granted by the security level of
the chosen primitives hold firmly within the complexity class
of problems solvable by a Turing machine in polynomial time.

The network of honest nodes is assumed to form a well
connected graph and the propagation of their messages is done
in a bounded time ∆.

Attack vectors’ prevention
1) Sybil attacks: mitigated through the stake locking when

joining the network. This way the generation of new
identities has a cost equal to the minimum stake;

2) Nothing at stake: removed through the need of multiple
signatures, not just from proposer, and the stake slashing.
The reward per block compared to the stake locked will
discourage such behavior;

3) Long range attacks: mitigated by our pruning mech-
anism, the use of a randomly selected consensus group
every round (and not just a single proposer) and stake
locking. On top of all these, our pBFT consensus algo-
rithm ensures finality;

4) DDoS attacks: the consensus group is randomly sam-
pled every round (few seconds); the small time frame
making DDoS almost impossible.

Other attack vectors we have taken into consideration are:
shard takeover attack, transaction censorship, double spend,
bribery attacks, etc.

4 Chronology
In Elrond’s network, the timeline is split into epochs and

rounds. The epochs have a fixed duration, set to one day (can
be modified as the architecture evolves), at the end of which
the shards reorganization and pruning is triggered. The epochs
are further divided into rounds, lasting for a fixed timeframe.
A new consensus group is randomly selected per shard in each
round, that can commit a maximum of one block in the shard’s
ledger.

New validators can join the network by locking their stake,
as presented in chapter V.2 - Secure Proof of Stake. They are
added to the unassigned node pool in the current epoch e, are
assigned to the waiting list of a shard at the beginning of epoch
e + 1, but can only become eligible validators to participate
in consensus and get rewarded in the next epoch e+ 2.

The timeline aspects are further detailed in section IX.1.

III Related Work
Elrond was designed upon and inspired by the ideas from

Ethereum [6], Omniledger [7], Zilliqa [8], Algorand [3] and
ChainSpace [9]. Our architecture goes beyond state of the
art and can be seen as an augmentation of the existing
models, improving the performance while focusing to achieve
a better nash equilibrium state between security, scalability
and decentralization.

1 Ethereum
Much of Ethereum’s [6] success can be attributed to the

introduction of its decentralized applications layer through
EVM [10], Solidity [11] and Web3j [12]. While Dapps have
been one of the core features of ethereum, scalability has
proved a pressing limitation. Considerable research has been
put into solving this problem, however results have been
negligible up to this point. Still, few promising improvements
are being proposed: Casper [13] prepares an update that will
replace the current Proof of Work (PoW) consensus with a
Proof of Stake (PoS), while Plasma based side-chains and
sharding are expected to become available in the near future,
alleviating Ethereum’s scalability problem at least partially
[14].

Compared to Ethereum, Elrond eliminates both energy and
computational waste from PoW algorithms by implementing a
SPoS consensus while using transaction processing parallelism
through sharding.

2 Omniledger
Omniledger [7] proposes a novel scale-out distributed ledger

that preserves long term security under permission-less op-
eration. It ensures security and correctness by using a bias-
resistant public-randomness protocol for choosing large, statis-
tically representative shards that process transactions. To com-
mit transactions atomically across shards, Omniledger intro-
duces Atomix, an efficient cross-shard commit protocol. The
concept is a two-phase client-driven ”lock/unlock” protocol
that ensures that nodes can either fully commit a transaction
across shards, or obtain ”rejection proofs” to abort and unlock
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the state affected by partially completed transactions. Om-
niledger also optimizes performance via parallel intra-shard
transaction processing, ledger pruning via collectively-signed
state blocks, and low-latency ”trust-but-verify” validation for
low-value transactions. The consensus used in Omniledger is a
BFT variation, named ByzCoinX, that increases performance
and robustness against DoS attacks.

Compared to Omniledger, Elrond has an adaptive approach
on state sharding, a faster random selection of the consensus
group and an improved security by replacing the validators’
set after every round (a few seconds) not after every epoch (1
day).

3 Zilliqa
Zilliqa [8] is the first transaction-sharding architecture that

allows the mining network to process transactions in parallel
and reach a high throughput by dividing the mining network
into shards. Specifically, its design allows a higher transaction
rate as more nodes are joining the network. The key is
to ensure that shards process different transactions, with no
overlaps and therefore no double-spending. Zilliqa uses pBFT
[15] for consensus and PoW to establish identities and prevent
Sybil attacks.

Compared to Zilliqa, Elrond pushes the limits of sharding
by using not only transaction sharding but also state sharding.
Elrond completely eliminates the PoW mechanism and uses
SPoS for consensus. Both architectures are building their own
smart contract engine, but Elrond aims not only for EVM com-
pliance, so that SC written for Ethereum will run seamlessly
on our VM, but also aims to achieve interoperability between
blockchains.

4 Algorand
Algorand [3] proposes a public ledger that keeps the con-

venience and efficiency of centralized systems, without the
inefficiencies and weaknesses of current decentralized imple-
mentations. The leader and the set of verifiers are randomly
chosen, based on their signature applied to the last block’s
quantity value. The selections are immune to manipulations
and unpredictable until the last moment. The consensus relies
on a novel message-passing Byzantine Agreement that enables
the community and the protocol to evolve without hard forks.

Compared to Algorand, Elrond doesn’t have a single
blockchain, instead it increases transaction’s throughput using
sharding. Elrond also improves on Algorand’s idea of random
selection by reducing the selection time of the consensus group
from over 12 seconds to less than a second, but assumes that
the adversaries cannot adapt within a round.

5 Chainspace
Chainspace [9] is a distributed ledger platform for high

integrity and transparent processing of transactions. It uses
language agnostic and privacy-friendly smart contracts for
extensibility. The sharded architecture allows a linearly scal-
able transaction processing throughput using S-BAC, a novel
distributed atomic commit protocol that guarantees consistency

and offers high auditability. Privacy features are implemented
through modern zero knowledge techniques, while the consen-
sus is ensured by BFT.

Compared to Chainspace, where the TPS decreases with
each node added in a shard, Elrond’s approach is not influ-
enced by the number of nodes in a shard, because the con-
sensus group has a fixed size. A strong point for Chainspace
is the approach for language agnostic smart contracts, while
Elrond focuses on building an abstraction layer for EVM
compliance. Both projects use different approaches for state
sharding to enhance performance. However, Elrond goes a
step further by anticipating the blockchain size problem in
high throughput architectures and uses an efficient pruning
mechanism. Moreover, Elrond exhibits a higher resistance
to sudden changes in node population and malicious shard
takeover by introducing shard redundancy, a new feature for
sharded blockchains.

IV Scalability via Adaptive State Sharding
1 Why sharding

Sharding was first used in databases and is a method for dis-
tributing data across multiple machines. This scaling technique
can be used in blockchains to partition states and transaction
processing, so that each node would process only a fraction of
all transactions in parallel with other nodes. As long as there
is a sufficient number of nodes verifying each transaction so
that the system maintains high reliability and security, then
splitting a blockchain into shards will allow it to process many
transactions in parallel, and thus greatly improving transaction
throughput and efficiency. Sharding promises to increase the
throughput as the validator network expands, a property that
is referred to as horizontal scaling.

2 Sharding types

A comprehensive and thorough introduction [16] empha-
sizes the three main types of sharding: network sharding,
transaction sharding and state sharding. Network sharding
handles the way the nodes are grouped into shards and can
be used to optimize communication, as message propagation
inside a shard can be done much faster than propagation
to the entire network. This is the first challenge in every
sharding approach and the mechanism that maps nodes to
shards has to take into consideration the possible attacks from
an attacker that gains control over a specific shard. Transaction
sharding handles the way the transactions are mapped to the
shards where they will be processed. In an account-based
system, the transactions could be assigned to shards based on
the sender’s address. State sharding is the most challenging
approach. In contrast to the previously described sharding
mechanisms, where all nodes store the entire state, in state-
sharded blockchains, each shard maintains only a portion of
the state. Every transaction handling accounts that are in
different shards, would need to exchange messages and update
states in different shards. In order to increase resiliency to
malicious attacks, the nodes in the shards have to be reshuffled
from time to time. However, moving nodes between shards
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introduces synchronization overheads, that is, the time taken
for the newly added nodes to download the latest state. Thus,
it is imperative that only a subset of all nodes should be
redistributed during each epoch, to prevent down times during
the synchronization process.

3 Sharding directions

Some sharding proposals attempt to only shard transactions
[8] or only shard state [17], which increases transaction’s
throughput, either by forcing every node to store lots of state
data or to be a supercomputer [2]. Still, more recently, at
least one claim has been made about successfully performing
both transaction and state sharding, without compromising on
storage or processing power [13].

But sharding introduces some new challenges like: single-
shard takeover attack, cross-shard communication, data avail-
ability and the need of an abstraction layer that hides the
shards. However, conditional on the fact that the above
problems are addressed correctly, state sharding brings con-
siderable overall improvements: transaction throughput will
increase significantly due to parallel transaction processing
and transaction fees will be considerably reduced. Two main
criterias widely considered to be obstacles transforming into
advantages and incentives for mainstream adoption of the
blockchain technology.

4 Elrond sharding approach

While dealing with the complexity of combining network,
transaction and state sharding, Elrond’s approach was designed
with the following goals in mind:

1) Scalability without affecting availability: Increasing
or decreasing the number of shards should affect a
negligibly small vicinity of nodes without causing down-
times, or minimizing them while updating states;

2) Dispatching and instant traceability: Finding out the
destination shard of a transaction should be determinis-
tic, trivial to calculate, eliminating the need for commu-
nication rounds;

3) Efficiency and adaptability: The shards should be as
balanced as possible at any given time.

Method Description
To calculate an optimum number of shards Nsh in epoch

ei+1 (Nsh,i+1), we have defined one threshold coefficient
for the number of transactions in a block, θTX . Variable
optN represents the optimal number of nodes in a shard,
εsh is a positive number and represents the number of nodes
a shard can vary by. totalNi is the total number of nodes
(eligible validators, nodes in the waiting lists and newly added
nodes in the node pool) on all shards in epoch ei, while
NTXB,i is the average number of transactions in a block on
all shards in epoch ei. Nsh,0 will be considered as 1. The
total number of shards Nsh,i+1 will change if the number of
nodes totalNi in the network changes and if the blockchain
utilization needs it: if the number of nodes increases above a
threshold nSplit from one epoch to another and the average
number of transactions per block is greater than the threshold

number of transactions per block NTXB,i > θTX or if the
number of nodes decreases below a threshold nMerge as
shown in function ComputeShardsN .

1: function COMPUTESHARDSN(totalNi+1, Nsh,i)
2: nSplit← (Nsh,i + 1) ∗ (optN + εsh)
3: nMerge← (Nsh,i − 1) ∗ a
4: Nsh,i+1 ← Nsh,i

5: if (totalNi+1 > nSplit and NTXB,i > θTX ) then
6: Nsh,i+1 ← totalNi+1/(optN + εsh)
7: else if totalNi+1 < nMerge then
8: Nsh,i+1 ← totalNi+1/(optN)

9: return Nsh,i+1

From one epoch to another, there is a probability that the
number of active nodes changes. If this aspect influences the
number of shards, anyone can calculate the two masks m1 and
m2, used in transaction dispatching.

1: function COMPUTEM1ANDM2(Nsh)
2: n← math.ceil(log2Nsh)
3: m1 ← (1 << n)− 1
4: m2 ← (1 << (n− 1))− 1
5: return m1,m2

As the main goal is to increase the throughput beyond
thousands of transactions per second and to diminish the cross-
shard communication, Elrond proposes a dispatching mecha-
nism which determines automatically the shards involved in
the current transaction and routes the transaction accordingly.
The dispatcher will take into consideration the account address
(addr) of the transaction sender/receiver. The result is the
number of the shard (shard) the transaction will be dispatched
to.

1: function COMPUTESHARD(Nsh, addr,m1,m2)
2: shard← (addr and m1)
3: if shard > Nsh then
4: shard← (addr and m2)
5: return shard

The entire sharding scheme is based on a binary tree
structure that distributes the account addresses, favors the
scalability and deals with the state transitions. A representation
of the tree can be seen in Fig. 2.

The presented tree structure is merely a logical represen-
tation of the account address space used for a deterministic
mapping; e.g. shard allocation, sibling computation etc. The
leaves of the binary tree represent the shards with their ID
number. Starting from root (node/shard 0), if there is only one
shard/leaf (a), all account addresses are mapped to this one
and all transactions will be executed here. Further on, if the
formula for Nsh dictates the necessity of 2 shards (b), the
address space will be split in equal parts, according to the last
bits in the address.

Sometimes, the tree can also become unbalanced (c) if Nsh

is not a power of 2. This case only affects the leaves on the
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Fig. 2: Example of a sharding tree structure

last level. The structure will become balanced again when the
number of shards reaches a power of 2.

The unbalancing of the binary tree causes the shards located
in the lowest level to have half the address space of nodes
of a shard located one level higher, so it can be argued that
the active nodes allocated to these shards will have a lower
fee income - block rewards are not affected. However, this
problem is solved by having a third of each shard nodes
redistributed randomly each epoch (detailed in the Chronology
section) and having a balanced distribution of nodes according
to the tree level.

Looking at the tree, starting from any leaf and going
through branches towards the root, the encoding from branches
represents the last n bits of the account addresses that will
have their associated originating transactions processed by that
leaf/shard. Going the other way around, from root to leaf,
the information is related to the evolution of the structure,
sibling shards, the parent shard from where they split. Using
this hierarchy, the shard that will split when Nsh increases or
the shards that will merge when Nsh decreases can easily be
calculated. The entire state sharding mechanism benefits from
this structure by always keeping the address and the associated
state within the same shard.

Knowing Nsh, any node can follow the redistribution pro-
cess without the need of communication. The allocation of
ID’s for the new shards is incremental and reducing the
number of shards involves that the higher numbered shards

will be removed. For example, when going from Nsh to Nsh-
1, two shards will be merged, the shard to be removed is
the highest numbered shard (shmerge=Nsh-1). Finding the
shard number that shmerge will be merged with is trivial.
According to the tree structure, the resulting shard has the
sibling’s number:

1: function COMPUTESIBLING(shmerge, n)
2: sibling ← (shmerge xor (1 << (n− 1)))
3: return sibling

For shard redundancy, traceability of the state transitions
and fast scaling, it is important to determine the sibling and
parent of a generic shard with number p:

1: function COMPUTEPARENTSIBLINGS(n, p,Nsh)
2: mask1 ← 1 << (n− 1)
3: mask2 ← 1 << (n− 2)
4: sibling ← (p xor mask1)
5: parent← min(p, sibling)
6: if sibling ≥ Nsh then
7: sibling ← (p xor mask2)
8: sibling2 ← (sibling xor mask1)
9: parent← min(p, sibling)

10: if sibling2 ≥ Nsh then . sibling is a shard
11: return parent, sibling,NULL
12: else
13: . sibling is a subtree with
14: . shards (sibling, sibling2)
15: return parent, sibling, sibling2
16: else . sibling is a shard
17: return parent, sibling,NULL

Shard redundancy
On blockchain, state sharding is susceptible to shard failure

when there is an insufficient number of online nodes in a
shard or the distribution is localized geographically. In the
unlikely case when one shard fails (either the shard cannot
be contacted - all nodes are offline, or consensus cannot be
reached - more than 1

3 of nodes are not responding), there is
a high risk that the entire architecture relies only on super-
full nodes [2], which fully download every block of every
shard, fully verifying everything. As displayed in Fig. 3, our
protocol has a protection mechanism that introduces a tradeoff
in the state holding structure by enforcing the shards from
the last tree level to also hold the state from their siblings.
This mechanism reduces the communication and eliminates
the bootstrapping when sibling shards are merging since they
already have the data.

Context switching
To preserve security in sharded public blockchains, context

switching becomes crucial [7]. This refers to the realloca-
tion of the active nodes between shards on a fixed time
interval by some random criteria. In Elrond’s approach, the
context switching represents a security improvement, but also
increases the complexity required to maintain consistency
between multiple states. The state transition has the biggest



7

Fig. 3: Shard redundancy across epochs

footprint on performance since the movement of active nodes
requires to resync the state, blockchain and transactions along-
side the eligible nodes in the new shard. At the start of
each epoch, in order to maintain liveness, only less than 1

3
of these nodes will be uniformly re-distributed across shards.
This mechanism is highly effective against forming malicious
groups.

5 Notarization (Meta) chain

All network and global data operations (node joining the
network, node leaving the network, eligible validator lists
computation, nodes assignment to the shard’s waiting lists,
consensus agreement on a block in a specific shard challenges
for invalid blocks will be notarized in the metachain. The
metachain consensus is run by a different shard that com-
municates with all other shards and facilitates cross-shard
operations. Every round of every epoch, the metachain receives
block headers from the other shards and, if necessary, proofs
for the challenges of the invalid blocks. This information
will be aggregated into blocks on the metachain on which
consensus has to be run. Once the blocks are validated in
the consensus group, shards can request information about
blocks, miniblocks (see chapter VII), eligible validators, nodes
in waiting lists etc., in order to securely process cross-shard
transactions. Further details about the cross-shard transaction
execution, communication between shards and metachain will

be presented in Chapter VII Cross-shard transaction process-
ing.

V Consensus via Secure Proof of Stake
1 Consensus Analysis

The first blockchain consensus algorithm based on Proof
of Work (PoW), is used in Bitcoin, Ethereum and other
blockchain platforms. In Proof of Work each node is required
to solve a mathematical puzzle (hard to calculate but easy to
verify). And the first node that finishes the puzzle will collect
the reward [18]. Proof of Work mechanisms successfully
prevent double-spending, DDoS and Sybil attacks at the cost
of high energy consumption.

Proof of Stake (PoS) is a novel and more efficient con-
sensus mechanism proposed as an alternative to the intensive
energy and computational use in Proof of Work consensus
mechanisms. PoS can be found in many new architectures like
Cardano [19] and Algorand [3] or can be used in next version
of Ethereum. In PoS the node that proposes the next block
is selected by a combination of stake (wealth), randomness
and/or age. It mitigates the PoW energy problem but also puts
two important issues on the table: the Nothing at Stake attack
and a higher centralization risk.

Proof of Meme as envisioned in Constellation [20], is an
algorithm based on the node’s historical participation on the
network. Its behaviour is stored in a matrix of weights in the
blockchain and supports changes over time. Also, it allows
new nodes to gain trust by building up reputation. The main
drawback regarding Sybil attacks is alleviated through the
NetFlow algorithm.

Delegated Proof of Stake (DPoS) found in Bitshares [21],
Steemit [22] and EOS [23] is a hybrid between Proof of
Authority and Proof of Stake in which the few nodes respon-
sible for deploying new blocks are elected by stakeholders.
Although it has a high throughput, the model is susceptible to
human related social problems such as bribing and corruption.
Also, a small number of delegates makes the system prone to
DDoS attacks and centralization.

2 Secure Proof of Stake (SPoS)
Elrond’s approach to consensus is made by combining

random validators’ selection, eligibility through stake and
rating, with an optimal dimension for the consensus group.
The algorithm is described in the steps below:

1) Each node ni is defined as a tuple of public key (Pk),
rating (default is 0) and the locked stake. If ni wishes
to participate in the consensus, it has to first register
through a smart contract, by sending a transaction that
contains an amount equal to the minimum required stake
and other information (Pks, a public key derived from
Pk and nodeid that will be used for the signing process
in order not to use a real wallet address).

2) The node ni joins the node pool and waits for the
shard assignment at the end of the current epoch e. The
shard assignment mechanism creates a new set of nodes
containing all the nodes that joined in epoch e and all



8

the nodes that need to be reshuffled (less than 1
3 of

every shard). All nodes in this set will be reassigned
to the waiting lists of shards. Wj represents j’s shard
waiting list and Nsh represents the number of shards. A
node also has a secret key sk that by nature is not to be
made public.

ni = (Pki, ratingi, stakei)

ni ∈Wj , 0 ≤ j < Nsh

3) At the end of the epoch in which it has joined, the node
will be moved to the list of eligible nodes (Ej) of a
shard j, where e is the current epoch.

ni ∈Wj,e−1 → ni 6∈Wj,e, ni ∈ Ej,e

4) Each node from the list Ej can be selected as part of an
optimally dimensioned consensus group (in terms of se-
curity and communication), by a deterministic function,
based on the randomness source added to the previous
block, the round r and a set of variation parameters.
The random number, known to all shard nodes through
gossip, cannot be predicted before the block is actually
signed by the previous consensus group. This property
makes it a good source of randomness and prevents
highly adaptive malicious attacks. We define a selection
function to return the set of chosen nodes (consensus
group) Nchosen with the first being the block proposer,
that takes following parameters: E, r and sigr−1 - the
previous block signature.

Nchosen = f(E, r, sigr−1), where Nchosen ⊂ E

5) The block will be created by the block proposer and the
validators will co-sign it based on a modified practical
Byzantine Fault Tolerance (pBFT).

6) If, for any reason, the block proposer did not create a
block during its allocated time slot (malicious, offline,
etc.), round r will be used together with the randomness
source from the last block to select a new consensus
group.

If the current block proposer acts in a malicious way, the rest
of the group members apply a negative feedback to change its
rating, decreasing or even cancelling out the chances that this
particular node will be selected again. The feedback function
for the block proposer (ni) in round number r, with parameter
ratingModifier ∈ Z is computed as:

feedbackfunction = ff(ni, ratingModifier, r)

When ratingModifier < 0, slashing occurs so the node
ni loses its stake.

The consensus protocol remains safe in the face of DDoS
attacks by having a high number of possible validators from
the list E (hundreds of nodes) and no way to predict the order
of the validators before they are selected.

To reduce the communication overhead that comes with an
increased number of shards, a consensus will be run on a
composite block. This composite block is formed by:

• Ledger block: the block to be added into the shard’s

ledger, having all intra shard transactions and cross shard
transactions for which confirmation proof was received;

• Multiple mini-blocks: each of them holding cross shard
transactions for a different shard;

The consensus will be run only once, on the composite
block containing both intra- and cross-shard transactions. After
consensus is reached, the block header of each shard is sent
to the metachain for notarization.

VI Cryptographic Layer
1 Signature Analysis

Digital signatures are cryptographic primitives used to
achieve information security by providing several properties
like message authentication, data integrity and non-repudiation
[24].

Most of the schemes used for existing blockchain platforms
rely on the discrete logarithm (DL) problem: one-way expo-
nentiation function y → αymod p. It is scientifically proven
that calculating the discrete logarithm with base is hard [25].

Elliptic curve cryptography (ECC) uses a cyclic group of
points instead of a cyclic group of integers. The scheme
reduces the computational effort, such that for key lengths
of only 160 - 256 bits, ECC provides same security level that
RSA, Elgamal, DSA and others provide for key lengths of
1024 - 3072 bits (see Table 1 [24]).

The reason why ECC provides a similar security level for
much smaller parameter lengths is because existing attacks on
elliptic curve groups are weaker than the existing integer DL
attacks, the complexity of such algorithms require on average√
p steps to solve. This means that an elliptic curve using a

prime p of 256 bit length provides on average a security of
2128 steps needed to break it [24].

Both Ethereum and Bitcoin use curve cryptography, with
the ECDSA signing algorithm. The security of the algorithm
is very dependent on the random number generator, because
if the generator does not produce a different number on each
query, the private key can be leaked [26].

Another digital signature scheme is EdDSA, a Schnorr
variant based on twisted Edwards curves that support fast
arithmetic [27]. In contrast to ECDSA, it is provably non-
malleable, meaning that starting from a simple signature, it
is impossible to find another set of parameters that defines
the same point on the elliptic curve [28], [29]. Additionally,
EdDSA doesn’t need a random number generator because it

Algorithm
Family

Crypto
systems

Security level (bit)
80 128 192 256

Integer
factorization RSA 1024 3072 7680 15360

Discrete
logarithm

DH, DSA,
Elgamal 1024 3072 7680 15360

Elliptic
curves

ECDH,
ECDSA 160 256 384 512

Symmetric
key

AES,
3DES 80 128 192 256

TABLE 1: Bit lengths of public-key algorithms for different
security levels
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uses a nonce, calculated as the hash of the private key and
the message, so the attack vector of a broken random number
generator that can reveal the private key is avoided.

Schnorr signature variants are gaining more attention [8],
[30] due to a native multi-signature capability and being
provably secure in the random oracle model [31]. A multi-
signature scheme is a combination of a signing and verification
algorithms, where multiple signers, each with their own private
and public keys, can sign the same message, producing a single
signature [32], [33]. This signature can then be checked by
a verifier which has access to the message and the public
keys of the signers. A sub-optimal method would be to have
each node calculate his own signature and then concatenate
all results in a single string. However, such an approach is
unfeasible as the generated string size grows with the number
of signers. A practical solution would be to aggregate the
output into a single fixed size signature, independent of the
number of participants. There have been multiple proposals
of such schemes, most of them are susceptible to rogue-key
(cancellation) attacks. One solution for this problem would
be to introduce a step where each signer needs to prove
possession of the private key associated with its public key
[34].

Bellare and Neven [35] (BN) proposed a secure multi-
signature scheme without a proof of possession, in the plain
public key model, under the discrete logarithm assumption
[31]. The participants commit first to their share Ri by prop-
agating its hash to all other signers so they cannot calculate
a function of it. Each signer computes a different challenge
for their partial signature. However, this scheme sacrifices the
public key aggregation. In this case, the verification of the
aggregated signature, requires the public key from each signer.

A recent paper by Gregory Maxwell et al. [29] proposes
another multi-signature scheme in the plain public key model
[36], under the ’one more discrete logarithm’ assumption
(OMDL). This approach improves the previous scheme [35] by
reducing the communication rounds from 3 to 2, reintroducing
the key aggregation with a higher complexity cost.

BLS [4] is another interesting signature scheme, from the
Weil pairing, which bases its security on the Computational
Diffie-Hellman assumption on certain elliptic curves and gen-
erates short signatures. It has several useful properties like
batch verification, signature aggregation, public key aggrega-
tion, making BLS a good candidate for threshold and multi-
signature schemes.

Dan Boneh, Manu Drijvers and Gregory Neven recently
proposed a BLS multi-signature scheme [5], using ideas from
the previous work of [35], [30] to provide the scheme with
defenses against rogue key attacks. The scheme supports
efficient verification with only two pairings needed to verify
a multi-signature and without any proof of knowledge of the
secret key (works in the plain public key model). Another
advantage is that the multi-signature can be created in only
two communication rounds.

For traceability and security reasons, a consensus based on
a reduced set of validators requires the public key from each
signer. In this context, our analysis concludes that the most
appropriate multi-signature scheme for block signing in Elrond

is BLS multi-signature [5], which is faster overall than the
other options due to only two communication rounds.

2 Block signing in Elrond
For block signing, Elrond uses curve cryptography based

on the BLS multi-signature scheme over the bn256 bilinear
group, which implements the Optimal Ate pairing over a 256-
bit Barreto Naehrig curve. The bilinear pairing is defined as:

e : g0 × g1 → gt (1)

where g0, g1 and gt are elliptic curves of prime order p defined
by bn256, and e is a bilinear map (i.e. pairing function). Let
G0 and G1 be generators for g0 and g1. Also, let H0 be a
hashing function that produces points on the curve g0:

H0 :M→ g0 (2)

where M is the set of all possible binary messages of any
length. The signing scheme used by Elrond employs a second
hasing function as well, with parameters known by all signers:

H1 :M→ Zp (3)

Each signer i has its own private/public key pair (ski, Pki),
where ski is randomly chosen from Zp. For each key pair, the
property Pki = ski ·G1 holds.

Let L = Pk1, Pk2, ..., Pkn be the set of public keys of
all possible signers during a specific round which, in the
case of Elrond, is the set of public keys of all the nodes in
the consensus group. Below, the two stages of block signing
process is presented: signing and verification.

Practical signing - Round 1
The leader of the consensus group creates a block with

transactions, then signs and broadcasts this block to the
consensus group members.

Practical signing - Round 2
Each member of the consensus group (including the leader)

who receives the block must validate it, and if found valid, it
signs it with BLS and then sends the signature to the leader:

Sigi = ski ∗H0(m) (4)

where Sigi is a point on g0.

Practical signing - Round 3
The leader waits to receive the signatures for a specific

timeframe. If it does not receive at least 2
3 · n + 1 signatures

in that timeframe, the consensus round is aborted. But if the
leader does receive 2

3 · n+ 1 or more valid signatures, it uses
them to generate the aggregated signature:

SigAgg =
∑
i

H1(Pki) · Sigi ·B[i] (5)

where SigAgg is a point on g0.
The leader then adds the aggregated signature to the block

together with the selected signers bitmap B, where a 1
indicates that the corresponding signer in the list L had its
signature added to the aggregated signature SigAgg.
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Practical verification
Given the list of public keys L, the bitmap for the signers B,

the aggregated signature SigAgg, and a message m (block),
the verifier computes the aggregated public key:

PkAgg =
∑
i

H1(Pki) · Pki ·Bi (6)

The result, PkAgg, is a point on g1. The final verification is

e(G1, SigAgg) == e(PkAgg,H0(m)) (7)

where e is the pairing function.

VII Cross-shard Execution

For an in depth example of how the cross-shard transactions
are being executed and how the communication between
shards and the metachain occurs, we are simplifying the entire
process to just two shards and the metachain. Assuming that
a user generates a transaction from his wallet, which has an
address in shard 0 and wants to send ERDs to another user that
has a wallet with an address in shard 1, the steps depicted in
Fig. 4 are required for processing the cross-shard transaction.

As mentioned in chapter V - Consensus via Secure Proof of
Stake, the blocks structure is represented by a block Header
that contains information about the block (block nonce, round,
proposer, validators timestamp etc), and a list of miniblocks
for each shard that contain the actual transactions inside. Every
miniblock contains all transactions that have either the sender
in the current shard and the receiver in another shard or the
sender in a different shard and the destination in the current
shard. In our case, for a block in shard 0, there will normally
be 3 miniblocks:

• miniblock 0: containing the intrashard transactions for
shard 0

• miniblock 1: containing cross-shard transactions with the
sender in shard 0 and destination in shard 1

• miniblock 2: containing cross-shard transactions with
sender in shard 1 and destination in shard 0. These
transactions were already processed in the sender shard
1 and will be finalized after the processing also in the
current shard.

There is no limitation on the number of miniblocks with 
the same sender and receiver in one block. Meaning multiple 
miniblocks with the same sender and receiver can appear in 
the same block.

1 Processing
Currently the atomic unit of processing in cross-shard 

execution is a miniblock: either all the transactions of the 
miniblock are processed at once or none and the miniblock’s 
execution will be retried in the next round.

Our cross-shard transaction strategy uses an asynchronous 
model. Validation and processing is done first in sender’s shard 
and then in receivers’ shard. Transactions are first dispatched in 
the sender’s shard, as it can fully validate any transaction 
initiated from the account in this shard – mainly the current 
balance. Afterwards, in the receivers’ shard, the nodes only 
need proof of execution offered by metachain, do signature 
verification and check for replay attack and finally update the 
balance for the receiver, adding the amount from the 
transaction.

Shard 0 processes both intra-shard transactions in miniblock 
0 and a set of cross-shard transactions that have addresses from 
shard 1 as a receiver in miniblock 1. The block header and 
miniblocks are sent to the metachain. The metachain notarizes 
the block from shard 0, by creating a new metachain block 
(metablock) that contains the following information about each 
miniblock: sender shard ID, receiver shard ID, miniblock hash.

Fig. 4: Cross-shard transaction processing
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Shard 1 fetches the hash of miniblock 1 from metablock,
requests the miniblock from shard 0, parses the transaction
list, requests missing transactions (if any), executes the same
miniblock 1 in shard 1 and sends to the metachain resulting
block. After notarization the cross transaction set can be
considered finalized.

The next diagram shows the number of rounds required for a
transaction to be finalized. The rounds are considered between
the first inclusion in a miniblock until the last miniblock is
notarised.

VIII Smart Contracts
The execution of smart contracts is a key element in all

future blockchain architectures. Most of the existing solutions
avoid to properly explain the transactions and data dependency.
This context leads to the following two scenarios:

1) When there is no direct correlation between smart con-
tract transactions, as displayed in Fig. 5, any architecture
can use out of order scheduling. This means there are
no additional constraints on the time and place (shard)
where a smart contract is executed.

2) The second scenario refers to the parallelism induced by
the transactions that involve correlated smart contracts
[37]. This case, reflected in Fig. 6, adds additional
pressure on the performance and considerably increases
the complexity. Basically there must be a mechanism
to ensure that contracts are executed in the right order
and on the right place (shard). To cover this aspect,
Elrond protocol proposes a solution that assigns and
moves the smart contract to the same shard where their
static dependencies reside. This way most, if not all SC
calls will have dependencies in the same shard and no
cross-shard locking/unlocking will be needed.

Elrond focuses on the implementation of the Elrond Virtual
Machine, an EVM compliant engine. The EVM compliance

Fig. 5: Independent transaction processing under simple
smart contracts that can be executed out of order

Fig. 6: Mechanism for correlated smart contracts that can be
executed only sequentially

Fig. 7: Abstraction Layer for Smart Contracts

is extremely important for adoption purposes, due to the large
number of smart contracts built on Ethereum’s platform.

The Elrond Virtual Machine’s implementation will hide the
underlying architecture isolating the smart contract developers
from system internals ensuring a proper abstraction layer, as
displayed in Fig. 7.

In Elrond, cross chain interoperability can be implemented
by using an adapter mechanism at the Virtual Machine level as
proposed by Cosmos [38]. This approach requires specialized
adapters and an external medium for communication between
adapter SC for each chain that will interoperate with Elrond.
The value exchange will be operated using some specialized
smart contracts acting as asset custodians, capable of taking
custody of adapted chain native tokens and issuing Elrond
native tokens.

1 VM Infrastructure
Elrond builds its VM infrastructure on top of the K Frame-

work, which is an executable semantic framework where
programming languages, calculi, as well as type systems or
formal analysis tools can be defined [39].

The greatest advantage of using the K framework is that
with it, smart contract languages can be unambiguously de-
fined, eliminating the potential for unspecified behavior and
bugs that are hard to detect.

The K Framework is executable, in the sense that the seman-
tic specifications of languages can be directly used as working
interpreters for the languages in question. More specifically,
one can either run programs against the specifications using
the K Framework core implementation directly, or one can
generate an interpreter in several programming languages.
These are also referred to as ”backends”. For the sake of
execution speed and ease of interoperability, Elrond uses its
own custom-built K Framework backend.

2 Smart contract languages
One great advantage of the K Framework is that one can

generate an interpreter for any language defined in K, without
the need for additional programming. This also means that
interpreters produced this way are ”correct-by-construction”.
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There are several smart contract languages specified in the K
Framework already, or with their specifications under develop-
ment. Elrond Network will support three low-level languages:
IELE VM, KEVM, and WASM.

• IELE VM is an intermediate-level language, in the style
of LLVM, but adapted for the blockchain. It was built
directly in K, no other specification or implementation of
it exists outside of the K framework [40]. Its purpose
is to be human readable, fast, and to overcome some
limitations of EVM. Elrond uses a slightly altered version
of IELE - most changes are related to account address
management. Smart contract developers can program in
IELE directly, but most will choose to code in Solidity
and then use a Solidity to IELE compiler, as can be seen
in Fig. 8.

• KEVM is a version of the Ethereum Virtual Machine
(EVM), written in K [41]. Certain vulnerabilities of EVM
are fixed in the K version, or the vulnerable features are
left out entirely.

• Web Assembly (WASM) is a binary instruction format
for a stack-based virtual machine, which can be used for
running smart contracts. A WASM infrastructure enables
developers to write smart contracts in C/C++, Rust, C#,
and others.

Having a language specification and generating the inter-
preter is only half of the challenge. The other half is integrating
the generated interpreter with the Elrond network. We have
built a common VM interface, that enables us to plug in any
VM into an Elrond node as shown in Fig. 9. Each VM then
has an adapter that implements this interface. Each contract is
saved as bytecode of the VM for which it was compiled and
runs on its corresponding VM.

3 Support for formal modelling and verification
Because the smart contract languages are formally defined

in K Framework, it is possible to perform formal verification
of smart contracts written in these languages. To do this, it
is necessary to also formally model their requirements, which
can also be performed using the K Framework [42].

Fig. 8: Elrond VM execution

Fig. 9: Elrond VM components

4 Smart contracts on the sharded architecture

Smart contracts on sharded architectures are still in the
early stages of research and development and pose serious
challenges. Protocols like Atomix [7] or S-BAC [9] represent
a starting point. Dynamic smart contract dependencies cannot
be resolved by moving the SCs into the same shard, as at
deployment time, not all the dependencies can be calculated.

Solution currently research in the space:
1) A locking mechanism that allows the atomic execution

of smart contract from different shards, ensures that the
involved SCs will be either all executed at the same
time, or none at all. This requires multiple interaction
messages and synchronization between consensuses of
different shards. [9]

2) Cross-shard contract yanking proposal for Ethereum 2.0
would move that smart contract code and data into the
caller shard at the execution time. Atomic execution is
not needed, but the locking mechanism is mandatory
on the moved SC, which would block the execution
of SC for other transactions. The locking mechanism
is simpler, but it needs to transfer the whole internal
state of the SC. [43]

Following Ethereum’s model, Elrond has the following
transaction types:

1) SC construction and deployment: transactions receiver
address is empty and data field contains the smart
contract code as byte array;

2) SC method invoking: transaction has a non empty re-
ceiver address and that address has an associated code;

3) Payment transactions: transaction has a non empty re-
ceiver and that address does not have code.

Elrond’s approach to this problem is to use asynchronous
cross-shard execution model in case of smart contracts. The
user creates a smart contract execution transaction. If the
smart contract is not in the current shard, the transaction is
treated as a payment transaction, the value of the transaction
is subtracted from the sender account and it is added to
the block where the sender shard resides, into a miniblock
with the destination shard where the receiver account is. The
transaction is notarized by metachain, then processed by the
destination shard. In the destination shard, the transaction is
treated as SC method invoking, as the receiver address is
a smart contract which exists in this shard. For the smart
contract call a temporary account which shadows the sender
account is created, with the balance from the transaction value
and the smart contract is called. After the execution, the
smart contract might return results which affects a number
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of accounts from different shards. All the results, which affect
in-shard accounts are executed in the same round. For those
accounts which are not in the shard where the smart contract
was executed, transactions called Smart Contract Results will
be created, saving the smart contract execution output for
each of these accounts. SCR miniblocks are created for each
destination shard. These miniblocks are notarized the same
way as cross-shard transactions by metachain, then processed
by the respective shards, where the accounts resides. In case
one smart contract calls dynamically another smart contract
from another shard, this call is saved as an intermediate result
and treated the same as for accounts.

The solution has multiple steps and the finalization of a
cross-shard smart contract call will need at least 5 rounds, but
it does not need locking and state movement across shards.

IX Bootstrapping and Storage

1 Timeline division

Proof of Stake systems tend to generally divide timeline into
epochs and each epoch into smaller rounds [19]. The timeline
and terminology may differ between architectures but most of
them use a similar approach.

Epochs
In Elrond Protocol, each epoch has a fixed duration, initially

set to 24 hours (might suffer updates after several testnet con-
firmation stages). During this timeframe, the configuration of
the shards remains unchanged. The system adapts to scalability
demands between epochs by modifying the number of shards.
To prevent collusion, after an epoch, the configuration of each
shard needs to change. While reshuffling all nodes between
shards would provide the highest security level, it would affect
the system’s liveness by introducing additional latency due to
bootstrapping. For this reason, at the end of each epoch, less
than 1

3 of the eligible validators, belonging to a shard will be
redistributed non-deterministically and uniformly to the other
shards’ waiting lists.

Only prior to the start of a new epoch, the validator
distribution to shards can be determined, without additional
communication as displayed in Fig. 10.

The node shuffling process runs in multiple steps:

1) The new nodes registered in the current epoch ei land
in the unassigned node pool until the end of the current
epoch;

2) Less than 1
3 of the nodes in every shard are randomly

selected to be reshuffled and are added to the assigned
node pool;

3) The new number of shards Nsh,i+1 is computed based
on the number of nodes in the network ki and network
usage;

4) Nodes previously in all shard’s waiting lists, that are cur-
rently synchronized, are added to the eligible validator’s
lists;

5) The newly added nodes from the unassigned node pool
are uniformly random distributed across all shards’
waiting lists during epoch ei+1;

6) The reshuffled nodes from the assigned node pool are
redistributed with higher ratios to shards’ waiting lists
that will need to split in the next epoch ei+2.

Rounds
Each round has a fixed time duration of 5 seconds (might

suffer updates after several testnet confirmation stages). During
each round, a new block can be produced within every shard
by a randomly selected set of block validators (including one
block proposer). From one round to another the set is changed
using the eligible nodes list, as detailed in the chapter IV.

As described before, the reconfiguration of shards within
epochs and the arbitrary selection of validators within rounds
discourages the creation of unfair coalitions, diminishes the
possibility of DDoS and bribery attacks while maintaining
decentralization and a high transactions throughput.

2 Pruning

A high throughput will lead to a distributed ledger
that rapidly grows in size and increases bootstrapping cost
(time+storage), as highlighted in section XI.1.

This cost can be addressed by using efficient pruning
algorithms, that can summarize the blockchain’s full state in a
more condensed structure. The pruning mechanism is similar
to the stable checkpoints in pBFT [15] and compresses the
entire ledger state.

Elrond protocol makes use of an efficient pruning algorithm
[7] detailed below. Let us consider that e is the current epoch
and a is the current shard:

1) the shard nodes keep track of the account balances of e
in a Merkle tree [44];

2) at the end of each epoch, the block proposer creates a
state block sb(a, e), which stores the hash of the Merkle
tree’s root in the block’s header and the balances in the
block’s body;

3) validators verify and run consensus on sb(a, e);
4) if consensus is reached, the block proposer will store

sb(a, e) in the shard’s ledger, making it the genesis block
for epoch e+ 1;

5) at the end of epoch e+ 1, nodes will drop the body of
sb(a, e) and all blocks preceding sb(a, e).

Using this mechanism, the bootstrapping of the new nodes
should be very efficient. Actually, they start only from the
last valid state block and compute only the following blocks
instead of its full history.

X Security Evaluation
1 Randomness source

Elrond makes use of random numbers in its operation e.g.
for the random sampling of block proposer and validators into
consensus groups and the shuffling of nodes between shards
at the end of an epoch. Because these features contribute
to Elrond’s security guarantees, it is therefore important to
make use of random numbers that are provably unbiasable and
unpredictable. In addition to these properties, the generation
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Fig. 10: Shuffling the nodes at the end of each epoch

of random numbers also needs to be efficient so that it can be
used in a scalable and high throughput blockchain architecture.

These properties can be found in some asymmetric cryptog-
raphy schemes, like the BLS signing scheme. One important
property of BLS is that using the same private key to sign
the same message always produces the same results. This is
similar to what is achieved using ECDSA with deterministic
k generation and is due to the scheme not using any random
parameters:

sig = sk ·H(m) (8)

where H is a hashing function that hashes to points on the
used curve and sk is the private key.

2 Randomness creation in Elrond
One random number is created in every round, and added

by the block proposer to every block in the blockchain. This
ensures that the random numbers are unpredictable, as each
random number is the signature of a different block proposer
over the previous randomness source. The creation of random
numbers is detailed below as part of one consensus round:

1) New consensus group is selected using the randomness
source from the previous block header. Consensus group
is formed by a block proposer and validators.

2) The block proposer signs the previous randomness
source with BLS, adds the signature to the proposed

block header as new randomness source, then broadcasts
this block to the consensus group.

3) Each member of the consensus group validates the
randomness source as part of block validation, and sends
their block signature to the block proposer.

4) Block proposer aggregates the validators block signa-
tures and broadcasts the block with the aggregated block
signature and the new randomness source to the whole
shard.

The evolution of randomness source in each round can be
seen as an unbiasable and verifiable blockchain, where each
new random number can be linked to and verified against the
previous random number.

3 ”K” block finality scheme

The signed block at round n is final, if and only if blocks
n+ 1, n+ 2, ..., n + k are signed. Furthermore, a final block
cannot be reverted. The metachain notarizes only final blocks
to ensure that a fork in one shard does not affect other shards.
Shards only take into consideration the final metachain blocks,
in order to not be affected if the metachain forks. Finality and
correctness is verified at block creation and at block validation
as well. The chosen k parameter is 1 and this ensures forks
of maximum 2 blocks length. The probability that a malicious
super majority (> 2

3 · n + 1) is selected in the shard for the
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same round in the same consensus is 10−9, even if 33% of
the nodes from the shard are malicious. In that case they can
propose a block and sign it - let’s call it block m, but it will
not be notarized by the metachain. The metachain notarizes
block m, only if block m+ 1 is built on top of it. In order to
create block m+1 the next consensus group has to agree with
block m. Only a malicious group will agree with block m, so
the next group must have a malicious super majority again.
As the random seed for group selection cannot be tampered
with, the probability of selecting one more malicious super
majority group is 10−9 (5.38 · 10−10, to be exact). The
probability of signing two consecutive malicious blocks equals
with selecting two subgroups with at least ( 23 ·n+1) members
from the malicious group consequently. The probability for
this is 10−18. Furthermore, the consequently selected groups
must be colluding, otherwise the blocks will not be signed.

4 Fisherman challenge
When one invalid block is proposed by a malicious majority,

the shard state root is tampered with an invalid result (after
including invalid changes to the state tree). By providing the
combined merkle proof for a number of accounts, an honest
node could raise a challenge with a proof. The honest nodes
will provide the block of transactions, the previous reduced
merkle tree with all affected accounts before applying the
challenged block and the smart contract states, thus demon-
strating the invalid transaction / state. If a challenge with the
proof is not provided in the bounded time frame, the block
is considered valid. The cost of one invalid challenge is the
entire stake of the node which raised the challenge.

The metachain detects the inconsistency, either an invalid
transaction, or an invalid state root, through the presented
challenges and proofs. This can be traced and the consensus
group can be slashed. At the same time the challenger can be
rewarded with part of the slashed amount. Another problem
is when a malicious group hides the invalid block from other
nodes - non-malicious ones. However, by making it mandatory
for the current consensus to propagate the produced block to
the sibling shard and to the observer nodes, the data cannot
be hidden anymore. The communication overhead is further
reduced by sending only the intrashard miniblock to the sibling
shard. The cross shard miniblocks are always sent on different
topics accessible by interested nodes. In the end, challenges
can be raised by multiple honest nodes. Another security pro-
tection is given by the setup of P2P topics. The communication
from one shard toward the metachain is done through a defined
set of topics / channels, which can be listened to by any
honest validator - the metachain will not accept any other
messages from other channels. This solution introduces some
delay in the metachain only in case of challenges, which are
very low in number and highly improbable since if detected
(high probability of being detected) the nodes risk their entire
stake.

5 Shard reorganization
After each epoch, less than 1

3 · n of the nodes from each
shard are redistributed uniformly and non-deterministically

across the other shards, to prevent collusion. This method adds
bootstrapping overhead for the nodes that were redistributed,
but doesn’t affect liveness as shuffled nodes do not participate
in the consensus in the epoch they have been redistributed.
The pruning mechanism will decrease this time to a feasible
amount, as explained in section IX.2.

6 Consensus group selection
After each round a new set of validators are selected using

the random seed of the last commited block, current round and
the eligible nodes list. In case of network desynchronization
due to the delays in message propagation, the protocol has
a recovery mechanism, and takes into consideration both the
round r and the randomness seed from the last committed
block in order to select new consensus groups every round.
This avoids forking and allows synchronization on last block.

The small time window (round time) in which the validators
group is known, minimizes the attack vectors.

7 Node rating
Beside stake, the eligible validator’s rating influences the

chances to be selected as part of the consensus group. If the
block proposer is honest and its block gets committed to the
blockchain, it will have its rating increased, otherwise, it’s
rating will be decreased. This way, each possible validator
is incentivized to be honest, run the most up-to-date client
software version, increase its service availability and thus
ensuring the network functions as designed.

8 Shard redundancy
The nodes that were distributed in sibling shards on the

tree’s lowest level (see section IV.4) keep track of each other’s
blockchain data and application state. By introducing the
concept of shard redundancy, when the number of nodes in
the network decreases, some of the sibling shards will need
to be merged. The targeted nodes will instantly initiate the
process of shard merging.

XI Understanding the real problems
1 Centralized vs Decentralized

Blockchain was initially instantiated as an alternative to
the centralized financial system of systems [45]. Even if the
freedom and anonymity of distributed architectures remains an
undisputed advantage, the performance has to be analyzed at
a global scale in a real-world environment.

The most relevant metric measuring performance is transac-
tions per second (TPS), as seen in Table 2. A TPS comparison
of traditional centralized systems with decentralized novel
architectures that were validated as trusted and efficient on
a large scale, reflects an objective yet unsettling reality [46],
[47], [48], [49].

The scalability of blockchain architectures is a critical
but still unsolved problem. Take, for instance, the example
determining the data storage and bootstrapping implications of
current blockchain architectures suddenly functioning at Visa
level throughput. By performing such exercises, the magnitude
of multiple secondary problems becomes obvious (see Fig.
11).
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Archi-
tecture

Type Dispersion
TPS

(average)
TPS

(max limit)

VISA
Distributed

virtualization
Centralized 3500 55000

Paypal
Distributed

virtualization
Centralized 200 450

Ripple
Private

Blockchain
Permissioned 1500 55000

NEO
Private

Blockchain
Mixed 1000 10000

Ethereum
Public

Blockchain
Decentralized 15 25

Bitcoin
Public

Blockchain
Decentralized 2 7

TABLE 2: Centralized vs Decentralized TPS comparison

XII The blockchain performance paradigm
The process of designing distributed architectures on

blockchain faces several challenges, perhaps one of the most
challenging being the struggle to maintain operability under
contextual pressure conditions. The main components that
determine the performance pressure are:

• complexity
• system size
• transaction volume

Complexity
The first element that limits the system performance, is the

consensus protocol. A more complicated protocol determines
a bigger hotspot. In PoW consensus architectures a big perfor-
mance penalty is induced by the mining complexity that aims
to keep the system decentralized and ASIC resilient [50]. To
overrun this problem PoS makes a trade-off, simplifies the
network management by concentrating the computing power
to a subset of the network, but yields more complexity on the
control mechanism.

System size
Expanding the number of nodes in existing validated archi-

tectures forces a serious performance degradation and induces
a higher computational price that must be paid. Sharding
seems to be a good approach, but the shard size plays a
major role. Smaller shards are agile but more likely to be
affected by malicious groups, bigger shards are safer, but their
reconfiguration affects the system liveness.

Transaction volume
With a higher relevance compared to the others, the last item

on the list represents the transaction processing performance.
In order to correctly measure the impact of this criteria, this
must be analyzed considering the following two standpoints:

• C1 transaction throughput - how many transactions a
system can process per time unit, known as TPS, an
output of a system [51];

• C2 transaction finality - how fast one particular trans-
action is processed, referring to the interval between its
launch and its finalization - an input to output path.

C1. T ransaction throughput in single chain architectures is
very low and can be increased by using workarounds such
as sidechain [52]. In a sharded architecture like ours, the
transaction throughput is influenced by the number of shards,
the computing capabilities of the validators/block proposers
and the messaging infrastructure [8]. In general, as displayed
in Fig. 13, this goes well to the public, but despite the
importance of the metric, it provides only a fragmented view.
C2. T ransaction finality - A more delicate aspect that

emphasizes that even if the system may have a throughput of
1000 TPS, it may take a while to process a particular transac-
tion. Beside the computing capabilities of the validators/block
proposers and the messaging infrastructure, the transaction
finality is mainly affected by the dispatching algorithm (when
the decision is made) and the routing protocol (where should
the transaction be executed). Most of the existing state of the
art architectures refuse to mention this aspect but from a user
standpoint this is extremely important. This is displayed in

Fig. 11: Storage Estimation - Validated distributed architectures working at an average of VISA TPS



17

Fig. 13: Transaction throughput

Fig. 14, where the total time required to execute a certain
transaction from start to end is considered.

In Elrond, the dispatching mechanism (detailed in section V)
allows an improved time to finality by routing the transactions
directly to the right shard, mitigating the overall delays.

XIII Conclusion

1 Performance

Performance tests and simulations, presented in Fig. 12,
reflect the efficiency of the solution as a highly scalable
distributed ledger. As more and more nodes join the network
our sharding approach shows a linearly increasing throughput.
The chosen consensus model involves multiple communication
rounds, thus the result is highly influenced by the network
quality (speed, latency, availability). Simulations using our
testnet using worldwide network speed averages, at its max-
imum theoretical limit, suggest Elrond exceeds the average
VISA level with just 2 shards, and approaches peak VISA
level with 16 shards.

Fig. 14: Transaction finality

2 Ongoing and future research

Our team is constantly re-evaluating and improving Elrond’s
design, in an effort to make this one of the most com-
pelling public blockchain architectures; solving scalability via
adaptive state sharding, while maintaining security and high
energy efficiency through a secure Proof of Stake consensus
mechanism. Some of our next directions of improvement
include:

1) Reinforcement learning: we aim to increase the ef-
ficiency of the sharding process by allocating the fre-
quently trading clients in the same shard to reduce the
overall cost;

2) AI supervision: create an AI supervisor that detects
malicious behavioral patterns; it is still uncertain how
this feature can be integrated in the protocol without
disrupting the decentralization;

3) Reliability as a consensus factor: the existing protocol
weighs between stake and rating but we plan to add
reliability, as a metric that should be computed in a
distributed manner after applying a consensus protocol
on previously submitted blocks from the very recent

Fig. 12: Network throughput measured in transactions per seconds with a global network speed of 8 MB/s
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history;
4) Cross-chain interoperability: implements and con-

tribute to standards like those initiated by the De-
centralized Identity Foundation [53] or the Blockchain
Interoperability Alliance [54];

5) Privacy preserving transactions: use Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge [55]
to protect the identity of the participants and offer
auditing capabilities while preserving the privacy.

3 Overall Conclusions
Elrond is the first highly scalable public blockchain that

uses the newly proposed Secure Proof of Stake algorithm
in a genuine state-sharded architecture to achieve VISA
level throughput and confirmation times of seconds. Elrond’s
novel approach on adaptive state sharding improves on Om-
niledger’s proposal increasing security and throughput, while
the built-in automatic transaction routing and state redundancy
mechanisms considerably reduce latencies. By using a shard
pruning technique the bootstrapping and storage costs are
also considerably reduced compared to other approaches. The
newly introduced Secure Proof of Stake consensus algorithm
ensures distributed fairness and improves on Algorand’s idea
of random selection, reducing the time needed for the random
selection of the consensus group from 12 seconds to 100
ms. Our method of combining state sharding and the very
efficient Secure Proof of Stake consensus algorithm has shown
promising results in our initial estimations, validated by our
latest testnet results.
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[39] G. Ros, u and T. F. S, erbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[40] T. Kasampalis, D. Guth, B. Moore, T. Serbanuta, V. Serbanuta, D. Fi-
laretti, G. Rosu, and R. Johnson, “Iele: An intermediate-level blockchain
language designed and implemented using formal semantics,” Tech.
Rep., 2018.

[41] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine,” Tech. Rep., 2017.

[42] “How Formal Verification of Smart Contracts Works |
RV Blog.” [Online]. Available: https://runtimeverification.com/blog/
how-formal-verification-of-smart-contracts-works/

[43] “Cross-shard contract yanking.” [Online]. Available: https://ethresear.
ch/t/cross-shard-contract-yanking/1450

[44] R. C. Merkle, “A Certified Digital Signature,” in Advances in Cryptology
— CRYPTO’ 89 Proceedings, ser. Lecture Notes in Computer Science.
Springer, New York, NY, Aug. 1989, pp. 218–238. [Online]. Available:
https://link.springer.com/chapter/10.1007/0-387-34805-0 21

[45] A. Veysov and M. Stolbov, “Financial System Classification: From
Conventional Dichotomy to a More Modern View,” Social Science
Research Network, Rochester, NY, SSRN Scholarly Paper ID 2114842,
Jul. 2012. [Online]. Available: https://papers.ssrn.com/abstract=2114842

[46] “XRP - The Digital Asset for Payments.” [Online]. Available:
https://ripple.com/xrp/

[47] “Visa - Annual Report 2017,” 2018. [Online]. Avail-
able: https://s1.q4cdn.com/050606653/files/doc financials/annual/2017/
Visa-2017-Annual-Report.pdf

[48] “PayPal Reports Fourth Quarter and Full Year 2017 Results
(NASDAQ:PYPL),” 2018. [Online]. Available: https://investor.
paypal-corp.com/releasedetail.cfm?releaseid=1055924

[49] M. Schwarz, “Crypto Transaction Speeds 2018 - All the Major
Cryptocurrencies,” 2018. [Online]. Available: https://www.abitgreedy.
com/transaction-speed/

[50] “The Ethereum Wiki - Mining,” 2018, original-date: 2014-02-
14T23:05:17Z. [Online]. Available: https://github.com/ethereum/wiki/
wiki/Mininghttps://github.com/ethereum/wiki

[51] “Transaction throughput.” [Online]. Available: https://docs.oracle.com/
cd/E17276 01/html/programmer reference/transapp throughput.html

[52] W. Martino, M. Quaintance, and S. Popejoy, “Chainweb: A Proof-
of-Work Parallel-Chain Architecture for Massive Throughput,” 2018.
[Online]. Available: http://kadena.io/docs/chainweb-v15.pd

[53] “DIF - Decentralized Identity Foundation.” [Online]. Available:
http://identity.foundation/

[54] H. I. World, “Blockchain Interoperability Alliance:
ICON x Aion x Wanchain,” Dec. 2017.
[Online]. Available: https://medium.com/helloiconworld/
blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd

[55] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-systems,” in Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, ser. STOC ’85. New
York, NY, USA: ACM, 1985, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/22145.22178

https://link.springer.com/chapter/10.1007/978-3-540-72540-4_13
https://link.springer.com/chapter/10.1007/978-3-540-72540-4_13
http://doi.acm.org/10.1145/1180405.1180453
https://link.springer.com/chapter/10.1007/978-3-642-03298-1_3
https://link.springer.com/chapter/10.1007/978-3-642-03298-1_3
http://doi.acm.org/10.1145/3087801.3087835
https://cosmos.network/whitepaper
https://runtimeverification.com/blog/how-formal-verification-of-smart-contracts-works/
https://runtimeverification.com/blog/how-formal-verification-of-smart-contracts-works/
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://papers.ssrn.com/abstract=2114842
https://ripple.com/xrp/
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://investor.paypal-corp.com/releasedetail.cfm?releaseid=1055924
https://investor.paypal-corp.com/releasedetail.cfm?releaseid=1055924
https://www.abitgreedy.com/transaction-speed/
https://www.abitgreedy.com/transaction-speed/
https://github.com/ethereum/wiki/wiki/Mininghttps://github.com/ethereum/wiki
https://github.com/ethereum/wiki/wiki/Mininghttps://github.com/ethereum/wiki
https://docs.oracle.com/cd/E17276_01/html/programmer_reference/transapp_throughput.html
https://docs.oracle.com/cd/E17276_01/html/programmer_reference/transapp_throughput.html
http://kadena.io/docs/chainweb-v15.pd
http://identity.foundation/
https://medium.com/helloiconworld/blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd
https://medium.com/helloiconworld/blockchain-interoperability-alliance-icon-x-aion-x-wanchain-8aeaafb3ebdd
http://doi.acm.org/10.1145/22145.22178

	Introduction
	General aspects
	Defining the challenges
	Adaptive State Sharding
	Secure Proof of Stake (SPoS)

	Architecture Overview
	Entities
	Intrinsic token
	Threat model
	Chronology

	Related Work
	Ethereum
	Omniledger
	Zilliqa
	Algorand
	Chainspace

	Scalability via Adaptive State Sharding
	Why sharding
	Sharding types
	Sharding directions
	Elrond sharding approach
	Notarization (Meta) chain

	Consensus via Secure Proof of Stake
	Consensus Analysis
	Secure Proof of Stake (SPoS)

	Cryptographic Layer
	Signature Analysis
	Block signing in Elrond

	Cross-shard Execution
	Processing

	Smart Contracts
	VM Infrastructure
	Smart contract languages
	Support for formal modelling and verification
	Smart contracts on the sharded architecture

	Bootstrapping and Storage
	Timeline division
	Pruning

	Security Evaluation
	Randomness source
	Randomness creation in Elrond
	"K" block finality scheme
	Fisherman challenge
	Shard reorganization
	Consensus group selection
	Node rating
	Shard redundancy

	Understanding the real problems
	Centralized vs Decentralized

	The blockchain performance paradigm
	Conclusion
	Performance
	Ongoing and future research
	Overall Conclusions

	References

